Multi-Agent Semi-Siamese Training for Long-tail and Shallow Face Learning
نویسندگان
چکیده
With the recent development of deep convolutional neural networks and large-scale datasets, face recognition has made remarkable progress been widely used in various applications. However, unlike existing public many real-world scenarios recognition, depth training dataset is shallow, which means that only two images are available for each ID. non-uniform increase samples, such issue converted to a more general case, known as long-tail learning, suffers from data imbalance intra-class diversity dearth simultaneously. These adverse conditions damage result decline model performance. Based on Semi-Siamese Training, we introduce an advanced solution, named Multi-Agent Training (MASST), address these problems. MASST includes probe network multiple gallery agents—the former aims encode features, latter constitutes stack prototypes (gallery features). For iteration, network, sequentially rotated stack, form pair networks. We give theoretical empirical analysis that, given (or shallow) loss, smooths loss landscape satisfies Lipschitz continuity with help agents updating queue. The proposed method out extra-dependency, thus can be easily integrated functions architectures. It worth noting although employed training, needed inference, without increasing inference cost. Extensive experiments comparisons demonstrate advantages shallow learning.
منابع مشابه
Improving Agent Performance for Multi-Resource Negotiation Using Learning Automata and Case-Based Reasoning
In electronic commerce markets, agents often should acquire multiple resources to fulfil a high-level task. In order to attain such resources they need to compete with each other. In multi-agent environments, in which competition is involved, negotiation would be an interaction between agents in order to reach an agreement on resource allocation and to be coordinated with each other. In recent ...
متن کاملtight frame approximation for multi-frames and super-frames
در این پایان نامه یک مولد برای چند قاب یا ابر قاب تولید شده تحت عمل نمایش یکانی تصویر برای گروه های شمارش پذیر گسسته بررسی خواهد شد. مثال هایی از این قاب ها چند قاب های گابور، ابرقاب های گابور و قاب هایی برای زیرفضاهای انتقال پایاست. نشان می دهیم که مولد چند قاب تنک نرمال شده (ابرقاب) یکتا وجود دارد به طوری که مینیمم فاصله را از ان دارد. همچنین مسایل مشابه برای قاب های دوگان مطرح شده و برخی ...
15 صفحه اولFeature Transfer Learning for Deep Face Recognition with Long-Tail Data
Real-world face recognition datasets exhibit long-tail characteristics, which results in biased classifiers in conventionally-trained deep neural networks, or insufficient data when long-tail classes are ignored. In this paper, we propose to handle long-tail classes in the training of a face recognition engine by augmenting their feature space under a center-based feature transfer framework. A ...
متن کاملRange Loss for Deep Face Recognition with Long-tail
Convolutional neural networks have achieved great improvement on face recognition in recent years because of its extraordinary ability in learning discriminative features of people with different identities. To train such a welldesigned deep network, tremendous amounts of data is indispensable. Long tail distribution specifically refers to the fact that a small number of generic entities appear...
متن کاملAn Online Q-learning Based Multi-Agent LFC for a Multi-Area Multi-Source Power System Including Distributed Energy Resources
This paper presents an online two-stage Q-learning based multi-agent (MA) controller for load frequency control (LFC) in an interconnected multi-area multi-source power system integrated with distributed energy resources (DERs). The proposed control strategy consists of two stages. The first stage is employed a PID controller which its parameters are designed using sine cosine optimization (SCO...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACM Transactions on Multimedia Computing, Communications, and Applications
سال: 2023
ISSN: ['1551-6857', '1551-6865']
DOI: https://doi.org/10.1145/3594669